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Abstract—Remote photoplethysmography (rPPG) allows for
the measurement of vital parameters by capturing subtle light
changes in skin through a video camera without the need for
physical contact. Heart rate (HR) is one of the essential vital
signs used to indicate the physiological health of the human body.
With the vast potential of this technology in the future of digital
healthcare, remote monitoring of physiological signals has gained
significant traction in the research community. This research
paper presents a comprehensive overview of the literature and
discusses its limitations. In further detail conventional methods
and recent advances in deep learning-based methods of rPPG.
Additionally, we analyze the implications of research findings and
discuss research gaps to guide future explorations.

Index Terms—remote photoplethysmography (rPPG), deep
learning, Non-contact heart rate measurement

I. INTRODUCTION

Following the COVID-19 pandemic, multiple industries
were brought under a strain. Heavy measures had to be
taken as restrictions were placed to further limit the spread
of the health crisis. Although all industries were victims
of the pandemic, the healthcare sector was hit pervasively.
The healthcare sector is built on social interaction between
patients and medical professionals. However, due to protocols
physicians minimized in-person contact to avoid spreading the
disease (Leibner, Stokes, Ahmad, & Legome, 2021). To limit
the spread of disease, increasing pressure was placed on the
healthcare sector to introduce and adopt innovative solutions
to deliver and optimize patient care. As a result, telemedicine
was widely adopted in numerous healthcare settings (Ali et
al., 2020). Prior to the pandemic, fewer than 2% of medical
professionals delivered care through telemedicine. Currently,
at least half of medical professionals have utilized telemedicine
for their appointments. The shift towards telemedicine and
the availability of low-cost smartphones emphasises the need
for the development of technology that can provide medical
professionals with vital information about their patients.

The monitoring of changes in vital signals traditionally was
an invasive procedure, involving the insertion of sensors into
the body. However, advancements in technology have now
made it possible to measure vital signs non-invasively (Burritt,
1998). Non-invasive methods can further be divided into two
main categories: those that require contact through the skin,
and those that measure remotely. The former known as the
contact-based method measures physiological signals through
changes in physical properties such as pressure, temperature

and transmitted light (Van Egmond, Hasenbos, & Crul, 1985).
While the latter, known as non-contact methods, collects
information on physiological signals through using video,
audio, infrared, or ultrasound, Doppler-based methods (Tohma,
Nishikawa, Hashimoto, Yamazaki, & Sun, 2021; Villarroel et
al., 2014). Non-contact methods have gained momentum as
it provides an outcome for telemedicine because it doesn’t
require a constrained clinical environment. Not only is it cost-
effective, but it is also suitable for continuous and long-term
monitoring without being inconvenient or uncomfortable.

Human vital signs provide crucial information about the
person’s physiological status and emotional state. Commonly
used indicators for measuring physiological state include body
temperature (BT), respiratory rate (RR), blood oxygen satura-
tion (SpO2), heart rate variability (HRV), and blood pressure
(BP) (Li, Chen, Zhao, & Pietikainen, 2014). One of the most
important physiological parameters which indicate a person’s
health is the heart rate (HR). HR indicates the number of times
a person’s heart beats per minute. HR fluctuation depends on
a person’s physical activity as well as emotional state. It is
an important parameter as HR monitoring can help detect
and prevent cardiovascular problems such as atherosclerosis,
arrhythmias, angina, and coronary artery disease.

A. Traditional Methods

Traditional measurements of vital parameters are done
by electrocardiogram (ECG), sphygmomanometer, and pulse
oximeters. ECG is widely considered to be the gold standard
for measuring HR, due to its high accuracy and reliability
(Qiao, Ayesha, Zulkernine, Jaffar, & Masroor, 2022). However,
as mentioned before, these methods have a tedious process as
it causes discomfort for the patients due to the need for a gel
on the chest area to attach the electrodes (Qiao et al., 2022).
Mercury and sphygmomanometer are typically used for BP
measurements. These devices measure the BP by gradually
increasing and decreasing the pressure of the cuff around the
upper arm by inflation. These methods proved an accurate
measurement, however, they can cause severe discomfort and
even pain for some individuals. The pressure applied to the
arm during the measurement process may be uncomfortable
or even painful for some patients, particularly those with sen-
sitive skin or underlying conditions that affect the circulatory
system. Therefore, ECG, Mercury, and sphygmomanometer
aren’t always practical for continuous monitoring of HR and



BP, as they can cause discomfort and requires the patient to
be in a constrained clinical environment.

B. Remote Photoplethysmograph

Photoplethysmography (PPG) is a common method for
measuring HR, it offers an inexpensive and straightforward
alternative with a 98% level of accuracy (Kim, Lee, & Sohn,
2021). PPG is a contact-based method that extracts pulse
signals through the illumination of the skin with a light-
emitting diode (LED) while measuring the amount of reflected
light by the skin. By acquiring the optical property changes
in blood vessels on the skin pulse waveform is extracted
to find out the state of the HR. Beer-Lambert’s Law is the
principle that describes the amount of light absorbed by
a single substance as it’s proportional to its concentration
(Taparia, Platten, Anderson, & Sniadecki, 2017). Haemoglobin
is a protein in the bloodstream that has a high absorption rate
of light at 532 nanometers. When the light of the LED is
passed through the skin, some of it’s reflected and some are
transmitted. (Swinehart, 1962). By measuring the amount of
the absorbed light at the specific green wavelength of 532 nm
is possible to determine the PPG signal by the difference in
concentration of haemoglobin (Kim et al., 2021).

During the last decade, considerable research has been
published on non-contact methods that provide insight into the
extraction of pulse signals by evaluating motion and colour-
based methods (Li et al., 2014; Balakrishnan, Durand, &
Guttag, 2013). Motion based-methods, retrieve pulse signals
from the cyclical flow of blood from the heart to the head
through the abdominal aorta and carotid arteries causing the
head to move or change in colour pattern. Recent research pro-
posed a novel algorithm where they tracked head oscillations
caused by cardiovascular circulation and principal component
analysis (PCA) to extract pulse signals (Balakrishnan et al.,
2013). The motion-based method relies on subjects staying
stationary and upright during video recording. Unfortunately,
this HR estimation method is incorrect and error-prone in real-
life situations due to the effect of temporal deviation, facial
expressions, and illumination variations that result in noise
(Gupta, Bhowmik, & Pal, 2018).

Recent advancements in rPPG methods have resulted in the
colour-based method. The colour-based method acquires PPG
waveforms by analyzing subtle colour changes of the facial
skin from a digital camera (e.g. webcam, RGB, camera, near-
infrared camera) (J. Chen et al., 2016). In this instance, the
digital camera functions as the photodetector that captures the
subtle colour changes of the skin. Also, instead of using a
LED with a fixed wavelength, the ambient light functions as
the luminosity source. In Figure 1 a schematic overview of
the rPPG principle is displayed.

rPPG methods are very promising as they not only eliminate
the discomfort of intrusive but also allow for continuous
monitoring of vital parameters, without the need for physical
contact. In a recent paper, they detected a region of interest
(ROI) like the face area and they compute the mean pixel val-
ues of each image frame from the RGB channels for extracting

Fig. 1. Principle of remote photopethysmography (Cheng et al., 2021)

PPG signals (Poh, McDuff, & Picard, 2010a). This method
was further improved by implementing several temporal filters
before and after independent component analysis (ICA) (Poh
et al., 2010a). With ICA, three independent signals are defined
by a linear combination of all three colour channels, and non-
Gaussianity is used as the criterion for independence. Other
advanced ICA methods have been proposed that achieve very
high accuracy for measuring HR on their data. The researchers
used built-in video cameras of a smartphone for recording
facial videos and utilised the raw green trace signal and ICA
separation sources to extract the PPG wave-signal (Kwon,
Kim, & Park, 2012). Later variations of the method were
introduced that defined three independent linear combinations
of the RGB channels with principal component analysis (PCA)
(Lewandowska, Rumiński, Kocejko, & Nowak, 2011). The
ICA and PCA methods are both regarded as blind source
separation methods (BSS). However, these BSS methods
retain motion artifacts which result in limited accuracy in
PPG wave signal extraction. Therefore, the chrominance-based
(CHROM) rPPG was introduced which improved the robust-
ness. Other research proposed an alternative HR measurement
framework which utilised near-infrared (NIR) channels. This
technique suggests a more robust method as it isn’t influenced
by noise of changes in environment illuminations (J. Chen et
al., 2016).

Advancements in artificial intelligence and computer vision
have led to remarkable breakthroughs. As a result of the
advancements in many non-contact-based rPPG processing
methods have begun to appear that leverage AI and deep neural
networks. Recently research proposed a novel rPPG denoising
algorithm to effectively mitigate noise from facial expressions
and illuminations (Lokendra & Puneet, 2022). Another novel
approach provided a deep learning algorithm that utilises 3D
convolutional neural network based on an attention mechanism
to predict the HR (Liu, Wei, Kuang, & Ma, 2022).

Above discussed methods extract pixels from a facial video
taken by RGB cameras. Various methods for extracting PPG
signals have been proposed by analyzing facial videos in which
various information algorithms are utilized. The differences
between estimated HR and actual physiological signals can be
due to multiple sources of noise (De Haan & Jeanne, 2013).
The noise of the extracted rPPG signal can vary depending on
factors such as the type of camera used, measurement condi-
tions, human error, and demographic biases (Bent, Goldstein,



Kibbe, & Dunn, 2020). Since commonly used datasets for
rPPG processing, lack demographic diversity. The majority of
the subjects in the dataset are of Euro-American descent (49%)
and Asian descent (27%) (Gross, Matthews, Cohn, Kanade, &
Baker, 2010), which limits the robustness of the algorithms.
The field of rPPG has gathered significant momentum in
recent years, with many studies exploring the potential of
rPPG presenting a technique without the need for physical
contact for measuring vital parameters such as HR (Sun &
Thakor, 2015). Despite these advancements, the literature
on rPPG is still limited by a number of factors, including
noise, demographic variations, and sensor noise variations.
These limitations have prevented the widespread adoption of
rPPG in real-world settings and have hindered its ability to
provide accurate and reliable vital parameter measurements.
As such, it is of utmost importance to thoroughly examine the
current state of rPPG and identify these limitations in order to
improve the efficacy of rPPG and facilitate its implementation
in practical applications.

By exploring the current state of remote photoplethysmog-
raphy vital signal measurements, this research paper aims to
provide a comprehensive overview of the literature and its
limitations. Additionally, this paper will help to identify the
challenges associated with implementing rPPG technology in
real-world settings and propose a heart rate (HR) estimation
method that mitigates these issues to improve the efficacy of
rPPG.

II. RESEARCH METHODOLOGY

In the literature, there isn’t a clear consensus of terms
describing the research topic. As a result, various search terms
were used for examining the literature. The following search
terms were used: “remote”, “non-contact”, “camera-based”,
“video-based”, “contactless”, “contact-free”, “imaging”, “pho-
toplethysmography”, “heart rate measurement”, ”heart rate
estimation”, heart rate variability, vital signs measurement,
vital parameter measurement, oxygen saturation, blood pres-
sure, blind source separation, deep learning, machine learning,
convolutional neural networks, transformers, and attention
mechanism.

In the process of identifying a wide range of relevant
published papers, the previously mentioned terms were used
to conduct searches in Google Scholar and PubMed. The
research paper includes only papers that use facial video for
extracting PPG signals. It’s also important to note that searches
for estimation of other vital parameters like RR, SpO2, and
BT haven’t been explicitly used. Research papers that utilized
specialised equipment weren’t also explicitly used. Research
papers that implemented specialised equipment are excluded
from the literature review.

III. RELATED WORK

The phenomenon of rPPG signal extraction is mainly based
on two theoretic frameworks. First, the theory based on
conventional PPG assumes penetration and reflection of light
through the dermis and arteries (Poh et al., 2010a). Second,

a theory that assumes that visible light won’t pass down to
pulsating arteries (Moco, Stuijk, & De Haan, 2015). Thus the
theories differ in the assumption of the depth of penetration
of light in the skin, whereas the second theory expects no
interaction with deeper blood vessels.

Motion-based methods also known as ballistocardiogra-
phy focus on capturing the differences in mechanical move-
ment due to the impact of blood flow from carotid arteries
(Balakrishnan et al., 2013). The working principle behind
ballistocardiography is utilizing Newtonian mechanics to de-
tect cyclical movement of the human body, caused by blood
flow. This theoretical framework assumes that the human
body is a stacked inverted pendulum. It hypothesizes that the
circulation of blood results in an opposite reactive force that
causes displacement of the head (Balakrishnan et al., 2013).
Although ballistocardiogram can yield waveform signals for
HR measurement this approach is left outside of the scope of
this research paper.

Back in 1937, Hertzman and Spealman first described that
transmission or reflectance of light on the finger could be
detected by a photoelectric cell (Hertzman, 1938). The sub-
sequent research that followed expanded upon this knowledge
and led to the development of rPPG method. The research
paper discovered that facial video recordings of subjects
contain sufficient information for PPG wave extraction and
HR estimation (Verkruysse, Svaasand, & Nelson, 2008). The
researchers instructed the subject the sit motionless while
recording facial videos. This paper presented the effect of
variations in resolutions and frame rates (fps) on HR es-
timation through facial videos. The results indicated that a
lower resolution led to a higher signal-to-noise ratio. This
research introduced the GREEN method, which is commonly
employed and utilizes a region of interest that is manually
selected by the user. The GREEN method calculates a raw
signal from the selected ROI pixels by calculating the mean
value for each RGB channel. Then, a 4-th order band-pass
filter was used to exclude certain cut-off frequencies. This
paper facilitated further exploration as the general feasibility
of rPPG was established. It’s called GREEN because fast
Fourier transformation (FTT) determined the power-spectral
density which showed that the green channel contains the
strongest PPG signal. This also corresponds with the fact that
haemoglobin exhibits the highest absorption rate, therefore it’s
also the preferred method for BVP extraction due to the fact
that the green channel contains more reflective information.

Further strides were made by Poh et al. which introduced
BSS and Bland-Altman correction for extracting rPPG signals.
They developed a novel automatic face tracking which ex-
tracted the ROI frame by frame, with a moving window of 30
seconds to achieve continuous measurement (Poh, McDuff, &
Picard, 2010b). The BSS (ICA) algorithm composes the three
colour channels of the RGB video through a linear mixture
of the source channels. Subsequently, Poh et al. improved
their algorithm by addressing the selection of the component
with the highest power spectrum instead of always choosing
the second component (Poh et al., 2010b). However, the



methods mentioned above still suffer from issues with specular
and motion artefacts. Therefore, a more robust approach was
proposed by researchers which introduced a chrominance-
based signal-extracting processing method, in short CHROM.
The CHROM method was developed by a research group
at Phillips where they introduce temporal normalization of
colour differences, thereby improving robustness to non-white
illumination and reducing noise from motion (De Haan &
Jeanne, 2013). Although this method improves upon BSS-
based methods it still suffers from issues with reflectance from
specular noise.

So other researchers suggested a new approach named
plane orthogonal to skin-tone (POS) which incorporates a
main features from spatial subspace rotation (2SR) which
is another existing algorithm (Wang, Den Brinker, Stuijk, &
De Haan, 2016). 2SR offers an advantage as the core idea of
the algorithm leverages temporal rotations of skin pixels by
integrating a subspace of the facial pixels and subsequently
determining the rotation angles (Wang, Stuijk, & De Haan,
2015). The POS approach uses physiological-based reasoning
projection of axes, thus resulting in a more robust approach as
it’s less influenced by noisy face masks. Besides these conven-
tional techniques, rPPG pulse extraction has also seen promise
with machine and deep learning methods. A deep learning
approach was suggested by Špetlı́k et al., where the HR was
predicted as a single scalar value by maximizing the signal-
to-noise ratio (SNR) in a 2D convolutional neural network.
Their algorithm was validated on three public datasets which
contained different motion and lighting conditions (Špetlı́k,
Franc, & Matas, 2018). However, these end-to-end deep-
learning approaches require an enormous amount of data
for training and optimization. So, such models need further
development for clinical applications to be viable.

IV. RPPG PROCESS

The following section provides a comprehensive overview
of the most important steps of a general rPPG approach
for HR measurement. Each step of the rPPG process for
HR measurement will be discussed in detail, including the
methods, processing and techniques used, the strengths and
limitations of each step.

1) Face Extraction: After the video input v(t) is obtained,
the face region is detected and extracted from each video
frame, t = 1, 2..., T represents each frame This is an important
step as it helps in accurately locating the face in the video.

2) ROI Selection: The ROI selection step involves selecting
a region of the face where the blood vessels are prominent
and the pulsation of blood can be easily observed. This is
usually the region around the cheeks, forehead or temple as
these pixels contain PPG related information.

3) RGB computation: In the RGB computation step, the
raw signal is extracted from the RGB channels of the video
frames. This step involves converting the colour information
of the pixels in the ROI into intensity values for each of the
RGB channels.

4) Signal Processing: The signal processing step involves
the extraction of the rPPG signal from the raw signal. This
involves several processing techniques such as filtering, de-
noising and baseline correction to improve the SNR, thus
increasing the quality of the extracted rPPG signal.

5) rPPG Method: The rPPG method step involves the
estimation of HR from the processed rPPG signal. This is
done by computing the frequency components of the signal
and selecting the peak corresponding to the HR.

6) HR Estimation: The HR estimation step involves the cal-
culation of the HR from the estimated frequency components.

Figure 10 shows a visual representation of the most im-
portant steps in a general rPPG process for HR measurement.
It showcases the crucial components involved in the process,
starting from face extraction, followed by ROI selection,
signal processing, rPPG method, and finally HR estimation.
The diagram highlights the importance of each step and the
relationship between them.

A. Face Extraction

The first step in the process is the acquisition of facial
video from the subject. This is usually done by a webcam,
smartphone or other video-capturing devices. Given a facial
video, the process starts by extracting a portion of the face
from each frame. This ROI selection aims to collect the signals
with the most information for estimating HR. The ROI is the
area within the video frame that contains the raw signal for
the algorithm. Research shows that ROI selection is of major
influence on the quality of the extracted PPG signal (Kim et
al., 2021). It’s imperative for the successful implementation
of rPPG that the facial region is precisely localized within
each video frame. Even slight misalignments of the facial
region across frames can result in substantial variations in
colour due to the presence of background pixels, leading to
substantial noise in the pulse signal.(Kim et al., 2021). This
is usually an intermediate step so that later a more precise
measurement can be taken. In early research, the bounding
box was manually selected by the researchers (Verkruysse
et al., 2008). Currently, the most frequent approach that is
implemented for selecting the bounding box is the Viola-Jones
method (Viola & Jones, 2001). This has mainly to do with
the popularity of the OpenCV library in Python, as it’s open
source and updated frequently. The selection of the bounding
box was based on a Haar cascade-face detector. Another
popular face extraction approach is the Histograms of Oriented
Gradients (HOG) which is also available in the OpenCV
library. These approaches also provide facial landmark points
e.g. lips, eyebrows, eyes etc. However, it is important to note
that these approaches are insufficient when dealing with spatial
or appearance-distorted faces, such as those resulting from
movement under realistic conditions. With the emergence of
deep learning, many algorithms have been able to tackle the
face extraction problem so that partial face can be extracted
(Qian, Sezan, & Matthews, 1998; Taigman, Yang, Ranzato, &
Wolf, 2014).



Fig. 2. Schematic overview of rPPG pipeline. (Gudi, Bittner, & van Gemert, 2020)

B. ROI Selection

Obviously, the Viola-Jones method also comes with some
drawbacks as it doesn’t always select the correct ROI for each
frame. It still suffers from issues with a background border
around the face area. Furthermore, it’s also computationally
intensive to run this for each frame as the method has
high computational complexity. This is especially troublesome
when real-time measurements need to be performed. In addi-
tion to this, the facial region contains eyebrows, eyes, glasses
etc. which can confound the extracted rPPG signal. Lee et al.
proposed an algorithm where skin-like pixels were selected
based on a neural network classifier (K.-Z. Lee, Hung, &
Tsai, 2012). The neural network takes colour RGB values
as input and subsequently passes them through the network
which results in a regression-based output. Then by setting a
threshold value for Tskin ∈ [0, 255], each pixel can be clas-
sified as skin or not. Skin detection can be done by machine
learning but also alternative algorithms exist. Kolkur et al.
proposed a novel algorithm that threshold skin pixels based on
RGB, Hue saturation values (HSV), and YCbCr colour values
(Kolkur, Kalbande, Shimpi, Bapat, & Jatakia, 2017). The
different colour spaces are necessary as RGB values combine
colour (chrominance) and intensity (luminance) information
with non-uniform characteristics. While HSV and YCbCr
approaches discriminate under uneven lighting conditions. By
applying a threshold to the Hue. Cb, and Cr values skin
pixels are selected within the bounding box. A threshold
can be manually chosen by the researchers or an adaptive
threshold can be applied. Adaptive thresholds are selected
per frame based on the highest density of pixel distribution.
The key idea behind this is that the majority of pixel values
will belong to the skin. Therefore, thresholds should exclude
less common pixels describing non-skin areas (eg. beards,
hairs, eyes). Nonetheless, each face has its own features in
terms of skin pigmentation, thus thresholds should exhibit

adaptive behaviour. Despite the accurate performance, studies
have found that skin detection for darker skin tones remains a
challenging task (Wang et al., 2016; Aarts et al., 2013). The
difficulty arises due to the decreased SNR as pigmentation
levels increase. This can be attributed to the absorption of
light by the epidermal layer containing melanin, leading to a
reduction in the amount of light reflected by the underlying
blood vessels.

Recent research has shown promise in normalizing the RGB
based magnitude, which has demonstrated reliable perfor-
mance across a broad range of skin types (De Haan & Jeanne,
2013). The benefit of skin detection over other approaches is
that informative pixels from the shoulder and neck can be
included in the evaluation. However, as discussed in the paper
a drawback of this approach is that objects with similar colour
as the skin will add additional noise (K.-Z. Lee et al., 2012).
ROI selection is crucial for extracting accurate rPPG signals.
Although some researchers simply use the provided bounding
boxes from the Viola-Jones or manual face detection. Other
researchers address these issues by combing face extraction
and additional skin coordinates selection in the face region
to exclude pixels which are non-informative. But these still
face challenges with darker skin tones and interference from
objects with similar colours as skin. Temporal noise could
render the extracted rPPG signal obsolete for use of HR
estimation. So, the implementation of ROI tracking aims for
the rPPG signal to be invariant from subject motions (Qian
et al., 1998). A simple approach is already discussed with
the Viola-Jones method as it selects the ROI per frame.
But, this is still challenging in real-time situations due to
high computational complexity. As a result, other approaches
have been proposed such as landmark tracing. An example
of a tracking algorithm is the speeded-up robust features
(SURF), which traces identified facial points (Bay, Tuytelaars,
& Van Gool, 2006). Other researchers utilized kernels to



compensate for the subjects motion and update ROI selection
at high FPS (Henriques, Caseiro, Martins, & Batista, 2014).
These methods are based on a tracking algorithm that extends
the rPPG pipeline which reduces computational complexity
and noise attributed to motion artifacts. The landmark tracing
helps in accurately defining a ROI to detect the pixel that
belongs to facial skin. It can also aid in eliminating areas
that aren’t of interest such as the eyes, and mouth. The ROI
most frequently selected by researchers are the forehead and
cheeks as these areas are less susceptible to movement from
facial expression (Tasli, Gudi, & Den Uyl, 2014).

C. Signal Processing

After ROI selection from the frames, the raw signal needs
to e extracted. The raw signal is a time series signal of
the colour channels, s(t) ∈ [R,G,B]. The raw pulse signal
usually mixed contains large noises from a variety of sources,
including misalignment in face tracking, noises in camera
sensors, and illumination changes arising from camera’s au-
tomatic adjustment (e.g. auto white balance, auto focus, etc.).
Therefore the raw signal is pre-processed. The signal values
are calculated by spatial averaging of all skin pixels in the
ROI video frame. This is a simple way to cope with spatial
noise which shows an improved SNR (Verkruysse et al.,
2008). Besides the spatial noise, the raw signal contains other
unwanted noises depending on illumination and other factors.
By applying filters with knowledge about frequencies from the
noise sources and other dependent factors the extracted rPPG
signal can be improved. As a result, the SNR is increased
which in turn improves the quality of the extracted rPPG
signal. Various studies differ between when the filtering of the
signal is applied either before or after dimensions reduction.
All the signal processing techniques discussed are applied at
different stages in the pipeline, and various studies use them
at different stages. A common filtering method is centralizing
the raw signal by subtracting the mean µs from the raw signal
s(t). An additional step can be done for normalization by
dividing it by the σs standard deviation of the raw signal.
Another filtering process that is frequently implemented is
a band-pass filter which suppresses the frequency bandwidth
(0.7 Hz to 5 Hz) components outside of the heart rate (40
to 220 bpm) (Boccignone et al., 2020). Thereby decreasing
the noise in the rPPG signal. The use of moving average
filtering is also frequently utilized in order to reduce the high-
frequency components of a signal. It’s an effective method for
minimizing motion artifacts and noise. The filter is applied
by calculating the average value of the input signal over a
specified temporal window. Then, the raw signal is substituted
for the average of the samples in the window which smooths
the raw signal and reduces the high-frequency noise. Another
filtering technique that can be applied to raw signals is the
hamming windows. The hamming window widely used signal-
processing technique. It’s applied to the raw signals to reduce
spectral leakage and improve the accuracy of the rPPG. The
hamming window is used in conjunction with the Fourier

Transform to obtain a more accurate representation of the
frequency content of the rPPG signal.

The finite impulse response (FIR) and infinite impulse
response (IIR) filters are also used in rPPG process. FIR filters
have a fixed, finite impulse response and are characterized
by a stable and predictable response, making them suitable
for applications that require a consistent output. On the other
hand, IIR filters have an infinite impulse response and are more
efficient, but also more complex. The Butterworth IIR filter is
often used in rPPG processing due to its flat passband and a
sharp transition from the passband to stopband. Researchers
have been exploring new techniques for reducing noise in
rPPG signals (Boccignone et al., 2020). For example, they
have been eliminating outliers in the signals and using the
background illumination as a reference. A simple approach to
deal with noise from light is utilizing the background pixels
as a reference to estimate the (Deng & Kumar, 2020). In
recent studies, researchers have been applying an adaptive
filter to remove illumination noise. An adaptive bandpass filter
is a novel component that dynamically changes the cutoff
frequencies based on previously estimated HR to produce
consistent HR estimates. It helps with isolating a narrow
frequency band of interest within the larger bandwidth signal
generated by rPPG. This technique uses an adaptive algorithm
to dynamically modify the filter coefficients and track changes
in the frequency content of the input signal.

V. OVERVIEW OF RPPG METHODS

In this section, various algorithms are discussed that
enhance the robustness and applicability of the rPPG
technology to less constrained conditions. Most rPPG
processing methods use a raw signal that consists of a
multidimensional temporal signal (e.g. RGB). It is assumed
that the raw signals contain a dimensional plethysmographic
signal p(t), which can be represented as a linear combination
of these raw signals using a weighted sum. Estimating the
weights for this combination has proven difficult and is one
of the most debated issues in the literature on rPPG (Rouast,
Adam, Chiong, Cornforth, & Lux, 2018). A full overview
of these methods can be seen in the table below, which
briefly describes their features. The methods are divided into
conventional image-processing approaches and deep-learning
approaches, depending on the type of algorithm used. Most
conventional methods for remote HR measurement follow
a similar framework as shown in Figure 10. While deep
learning differs from this as there are various forms from end-
to-end frameworks to hybrid models. The following sections
discuss studies on rPPG signal processing, and algorithm,
highlighting the contributions of the current literature. Table
I shows the various methods from the literature and highlight
the unique features and characteristics of each method. The
last step of HR is an estimation by further post-processing
will also be addressed, which typically involves frequency
analysis and peak detection.



TABLE I
OVERVIEW OF RPPG METHODS AND THEIR DESCRIPTIVE

CHARACTERISTICS

Method Description
Conventional techniques

GREEN

Green channel extraction as it contains
more reflective information from
haemoglobin compared to the blue
and red channels.

PCA A blind source separation technique
which extracts uncorrelated components

ICA
Other blind source separation
technique to obtain independent
components form temporal RGB signal

CHROM
Chrominance-based method implements
normalization of colour differences to reduce
non-white illumination and motion artifacts

POS Plane orthogonal to skin leverages temporal
normalization of the RGB space.

SSR
The SSR or 2SR method uses subspace
rotation and temporal rotation for
rPPG pulse extraction.

PBV

PBV utilize knowledge from blood
volume changes in different
wavelengths to distinguish between pulse
signal changes and movement noise.

Deep Learning

2D CNN 2D convolutional neural networks use
end to end frameworks to estimate HR

3D CNN

3D convolutional neural networks use
spatiotemporal networks to analyze the
temporal information in the video frames
to estimate the HR.

RNN

Recurrent neural networks used temporal
networks to propagate spatial features
from 2D CNN for rPPG signal extraction
with LSTM and attention mechanism.

Hybrid Models
Deep learning techniques are applied
in some parts of the rPPG pipeline for
optimization,extraction or HR estimation.

A. GREEN Method

The GREEN method was first reported by Verkuysse et
al. in 2008 (Verkruysse et al., 2008). The Green method
is based on the observation that the green channel provides
the strongest photoplethysmography signal, corresponding to
an absorption peak by oxyhaemoglobin (Verkruysse et al.,
2008). The absorption of green light by oxyhaemoglobin is
the primary factor that causes the green channel to provide the
strongest rPPG signal. This makes the green channel method
a reliable and effective way to measure the changes in blood
volume and oxygenation in the skin. The blue and red colour
channels also contain photoplethysmographic information, but
they diffuse less reflective information and thus provide a
weaker signal. Wu et al. further illustrated this in their study
where they attempted to display the pulse changes over time
by maximizing the green channel (Wu et al., 2012)

B. PCA Method

A popular algorithm for BSS is PCA which is a commonly
used technique in signal processing and machine learning
fields. Leandowska et al. first introduces PCA for rPPG ex-
traction and which was later used by others (Lewandowska et
al., 2011; Balakrishnan et al., 2013). PCA is a statistical tech-
nique that reduces the dimensionality of the multi-dimensional
signals while preserving the maximizing of variance and
minimizing the covariance. PCA separates the raw multi-
dimensional signals into linearly uncorrelated components and
orders them based on variance. PCA calculates the covariance
matrix of the multi-channel temporal signals. The covariance
matrix is calculated as C = 1

m−1X
TX , where X ∈ Rn×m

is the data matrix, with n being the number of channels
and m being the number of time samples. Subsequently,
the eigenvectors of the covariance matrix are calculated. The
eigenvectors corresponding to the principal components of the
raw multi-dimensional signal. It”s calculated by Cvi = λivi,
where λi is the eigenvalue corresponding to the eigenvector
vi. The multi-channel temporal signals are projected onto the
principal components. The rPPG signal can be extracted by
projecting the data onto the eigenvectors corresponding to the
first few PCs, represented as Y = Xv1, Xv2, . . . , Xvk, where
k is the number of PCs used for the projection. PCA helps
identify the underlying structure in the multi-channel temporal
signals of rPPG and extract the most important information.

C. ICA Method

Another popular BSS is ICA. ICA is also a statistical tech-
nique, but it aims at decomposing a linear mixture of sources
under the assumption of non-Gaussianity and independence.
Poh et al. introduced ICA for deriving rPPG signals from three
RGB colour channels. The calculation process of ICA for a
raw multi-dimensional temporal signal x(t) ∈ Rm×1 can be
done by transferring the signal to a new coordinate system,
where m is the number of channels (Poh et al., 2010b). ICA
splits the multidimensional signal into multiple components
x(t) ∈ Rm×1, where m is the number of channels. The first
step is t get the whitening matrix W ∈ Rm×m by using a
Jacobian rotation. The raw multi-dimensional temporal signal
x(t) is transformed into a white signal y(t) by calculating
y(t) = Wx(t). The independent components are obtained
by calculating s(t) = Wy(t) = W 2x(t). Poh et al. used
the joint approximate diagonalization of eigenmatrices (JADE)
method to separate the mixed signal x(t) into four independent
components s(t). The rPPG signal was empirically determined
by selecting the second signal. This is explained by the
authors as the second component usually is the most periodic
signal. However, in later studies, Poh et al. invalidated this
assumption, as theoretically the order of the ICA is random.
An improved algorithmic version employs selection criteria
to determine the rPPG. An example of selection criteria is to
choose the independent component with the highest peak in
the frequency spectrum (Poh et al., 2010a). Another simple
criterion that can be done is choosing the highest periodicity
according to the percentage of spectral power. The criteria for



component selection are equally applicable to PCA. In Figure
3 an example of ICA is illustrated. The figure displays the de-
composition of a multidimensional signal into its independent
components. The selection of the independent component was
also addressed by machine learning techniques. They proposed
a k-nearest neighbour algorithm which outperformed the other
manual selection approach and the criterion mentioned before
(Monkaresi, Calvo, & Yan, 2013).

Fig. 3. Schematic overview of ICA (Waqar et al., 2021)

D. CHROM Algorithm

The CHROM method has been proposed to address the
weakness of other methods, as it enhances against motion
robustness. The CHROM method leverages the unique char-
acteristic of facial skin colour changes, which are caused by
alterations in the cardiac cycle, and can be more pronounced
than variations in intensity. The variation in colour exists out of
two components. First, the diffuse reflection is related to blood
flow, and second, the specular reflections, constitute the colour
of the light source and don’t contain any pulse signal. Under
realistic conditions, the contribution of these two reflections
is dependent on the angle between the camera, skin, and
light source (De Haan & Jeanne, 2013). Thus, the previously
mentioned methods are less robust against motion artifacts
as they don’t eliminate the additive specular component. So,
CHROM tackles this by removing the specular component
resulting in enhanced motion robustness. After pre-processing
with centralization of the raw signal x(t), the values are
projected into two orthogonal chrominance vectors XCHROM

and YCHROM (Moço, Stuijk, & de Haan, 2016). The two
vectors are calculated as follows, with r,g, and b representing
the respective channels:

XCHROM (t) = 3xr(t)− 2xg(t) (1)

YCHROM (t) = 1.5xr(t) + xg(t)− 1.5xb(t) (2)

The final rPPG signal is then calculated as:

s(t) = XCHROM (t)− αYCHROM (t) (3)

where α = σ(XCHROM (t))
σ(YCHROM (t)) , and σ(·) is the standard devia-

tion. The parameter α accounts for imprecision in skin-tone
standardization.

E. POS Method

The POS algorithm was developed by Wang et al. to
extract a pulse signal (Wang et al., 2016). The POS algorithm
addressed the same problem that’s also tackled by CHROM,
which relates to the reduction of specular noise. The POS algo-
rithm uses a plane orthogonal to the skin tone in the temporally
normalized RGB space for rPPG extraction. It’s similar to the
CHROM method but changes the order of colour distortion
reduction. The study tested the new approach on subjects
with different skin tones and activity levels, in a laboratory
setting. The published results showed that the POS algorithm
outperforms CHROM and PCA/ICA algorithms (Wang et al.,
2016). The POS algorithm performs the following steps from a
raw extracted ROI signal x(t). First, a temporal normalization
step is performed to derive two components XPOS(t) and
YPOS(t):

XPOS(t) = xg(t)− xb(t) (4)

YPOS(t) = xg(t) + xb(t)− 2xr(t) (5)

Similar to CHROM, the last step is accomplished to tune
the projection direction within the bounded region defined by
the temporal normalization step:

s(t) = XPOS(t) + αYPOS(t) (6)

Here, α represents the same as the CHROM method. The
POS approach differs slightly from the CHROM method,
because in the latter the two projected signals are anti-phase,
while the POS algorithm directly finds two projection axes
giving in-phase signals (Wang et al., 2016).

F. SSR Method

Wang et al. also developed the SSR or 2SR algorithm that
observes a subspace of skin pixels over time and measures
their “rotation” for rPPG extraction (Wang et al., 2015). The
paper of Wang et al. proposed a data-driven algorithm, that has
the advantage of extending the pulse amplitude and reducing
the distortion by the light reflection. The SSR algorithm was
introduced to overcome two problems related to skin-tone or
pulse related priors of previously discussed rPPG methods.
The SSR method consists of two steps. First, the subspace of
skin pixels needs to be constructed. Then the rotation angle of
the subspace can be computed for subsequent frames. The
skin pixels in an RGB space can be characterized by the
eigenvectors obtained through the eigenvalue decomposition
of the RGB representation of the skin pixels (Wang et al.,
2015). The SSR algorithm starts with creating a matrix X of
skin-pixel vectors, where each row is a single pixel and the
columns are the RGB channels, with dimensions N x 3 ( N
being the number of pixels). Then a correlation matrix C can
be computed as the matrix product of X transpose and X
divided by N :

C =
XTX

N
(7)



The rotation between the vector ut1 and orthonormal plane
uτ2, uτ3 is used to compute the subspace rotation, which is
given by V0 = (ut1)T · (uτ2,uτ3). The decomposition of C
also gives a scale/energy change of the subspace, represented

by E =
√

λt1
λτ2

· λt1

λτ3

T

(Boccignone et al., 2020).
To obtain the time-consistent EV over multiple strides, the

rotation and scaling need to be combined and back projected
into the original RGB space, represented as EV0 =

√
λt1

λτ2
·

ut1T · uτ2 · uτ2T +
√

λt1

λτ3
· ut1T · uτ3 · uT

τ3.
Finally, multiple EV0 between the reference frame and

succeeding frames are estimated and concatenated into a 3-
dimensional trace EV in a single stride. To derive a pulse
signal, the anti-phase traces EV1 and EV2 are combined as
p̄ = EV1 − σ(EV1)

σ(EV2)
EV2, and a long-term pulse-signal is

estimated from subsequent strides by using overlap-adding as
P̄(t−l) = P̄(t−l)−(p̄−µ(p̄)), where µ denotes the averaging
operator. The final output is represented as s(t) = P̄(t)
(Boccignone et al., 2020).

The study of the SSR algorithm had participants with
varying skin tones and under various illumination and activity
conditions. The SSR algorithm outperformed previous BSS
methods (PCA, ICA) and CHROM. However, the subspace
axes constructed by SSR are data-driven without physiological
considerations. This results in a limitation of the performance
when the spatial measurements are unreliable, an example of
this is when the skin mask is noisy or poorly chosen.

G. PBV Method

The pulse blood volume (PV) method was suggested by
researchers from Phillips and ASML to alleviate problems
with motion noise. PBV uses the signature of blood volume
changes in different wavelengths to explicitly distinguish the
pulse-induced colour changes from motion noise in RGB
signals (De Haan & Van Leest, 2014). PBV vector is calculated
as follows:

Pbv(t) =
σ(Xc)√

σ2(Xr) + σ2(Xg) + σ2(Xb)
(8)

where X = Xr, Xg , Xb and x(t) is the pre-processed signal
obtained from ROI selection and filtering. σ() is the standard
deviation operator. To compute the final output of the rPPG
signal a projection needs to be done with the orthogonal matrix
M , whereby k represents a normalizing factor:

s(t) = Mx(t) (9)

M = kPbv(XXT )−1 (10)

H. BKF Method

The bounded Kalman filter (BKF) is a method that aims
at minimizing motion artifacts such as blurring and noise
caused by head movement and facial expressions. The BKF
is a kinematic estimation that implements the tracking of
regions of interest in a facial video. It is an extension of the

existing Kalman filter. BKF models the predicted feature point
locations of a frame as a function of the velocity of the feature
points from previous frames, minimizing the errors caused by
drift and instantaneous movements. The model uses a cubic
spline interpolated function to extrapolate the next possible
feature point locations and eliminates drift errors by incorpo-
rating a boundary kernel in the Kalman filter prediction. BKF
consists of three primary phases: predict phase, the update
phase, and the boundary comparison phase. It uses kinematic
equations to calculate the predicted feature point locations,
process noise, and acceleration of each feature point being
tracked. The predicted feature point locations are stored in a
matrix.

I. End-to-End Deep Learning Methods

The further section will go into detail about end-to-end
deep learning approaches for rPPG. End-to-end methods are
deep learning methods that take a video input and generate a
physiological signal as the output. Deep learning methods are
indisputably great tools due to their straightforward model op-
timization process. Deep learning methods typically work well
with sufficient training data and when the validation, testing
data and training data are of similar distribution. However,
imbalances in the data set can lead to biases and overfitting.
Further experimental research and data gathering need to be
done to validate the translation for clinical applications.

J. 2D CNN

The algorithms discussed in previous sections are all based
on conventional signal processing techniques with prior knowl-
edge about the HR range. rPPG extraction can also be regarded
as a regression problem and classification problem where the
video data is the input and the ground truth is the output.
Advanced deep learning techniques, such as 2D convolutional
neural networks utilize automatic feature selection and reduce
the steps of the conventional rPPG pipeline. Back in 2018
Chen and Mcduff developed an end-to-end framework for HR
and breathing rate (W. Chen & McDuff, 2018). The network
called DeepPhys is a deep learning-based 2D convolutional
based on the VGG architecture. The VGG network is often
used in the field of computer science as it can be utilized
for transfer learning with pre-trained weights. VGG networks
have an accurate performance in object detection and image
recognition. The DeepPhys model takes normalized frames
difference as input motion representation. It utilizes a two-
stream method with motion representation and an attention
mechanism using appearance information representation. The
network learned soft-attention masks from the original video
frames and allocated higher weights to skin areas with stronger
signals. The implemented attention mechanism enables visu-
alization of the spatiotemporal distribution of physiological
signals, which can be seen in Figure 4. Figure 4 illus-
trates the DeepPhys architecture based on VGG, where the
time–frequency spectra of PPG signals are used as the input
for vital parameter estimation.



Other authors made further improvements on top of Deep-
Phys and developed the MTTS-CAN model. The mode pro-
posed by Liu et al. introduces a temporal shift module that uses
a mechanism to replace 3D CNN without reducing accuracy
while requiring less computational power (Liu, Fromm, Patel,
& McDuff, 2020). This is achieved by shifting chunks of the
tensor along the temporal axis. Also, the computational power
was reduced by averaging multiple adjacent frames than using
the original video frames.

Fig. 4. Network architecture of DeepPhys (W. Chen & McDuff, 2018).

K. 3D CNN

Solely-based 2D CNN only takes partial dimensions into
account, either spatial or temporal. Due to this limitation,
researchers have proposed other frameworks that take spatial
as well as temporal information into account. This developed
network integrates more available information from the facial
video to estimate the vital parameters of the subject by using
3D sliding kernels. Yu et al. developed a 3D CNN based called
PhysNet, which uses spatiotemporal dimensions to estimate
HR and HRV accurately (Yu, Li, & Zhao, 2019). PhysNet
takes the RGB video frames as input and directly returns a
rPPG signal as the final output. They implemented a loss
function based on negative Pearson correlation in order to
minimize problems with peak location errors (Yu, Li, & Zhao,
2019). This architecture with 3D CNN displayed better per-
formance over another architecture the researchers proposed
in their paper which incorporated recurrent neural networks
(RNN).

Yu et al. also developed another two-stage end-to-end frame-
work to overcome the problem of highly compressed facial
videos. The aim of the spatiotemporal video enhancement
network (STVEN) is to improve the quality of the video
while retaining as much information (Yu, Peng, Li, Hong, &
Zhao, 2019). The paper provided two independent methods,
one for video enhancement and the other for rPPG signal
recovery. STVEN is the first method proposed in the papers
which is a video-to-video generator aimed at enhancing the
quality of compressed videos. The STVEN model is optimized
on two loss functions. First the mean squared error loss
with L1 loss. In addition, a cycle loss is used to improve
the generalisation of the proposed algorithm. The second
proposed method rPPGNet contains three main components,
spatiotemporal CNN, a skin-based attention module, and a
partition constraint. This network also uses a minimization of
negative Pearson correlation as a loss function. The skin-based

module helps in refining the importance of features selection of
the ROI, instead of skin pixel averaging like the conventional
methods. The partition constraint helps with the features in
the model by dividing the deep features into uniform parts
and applying global average pooling. The paper of Yu et al.
suggested that the rPPGNet is able to recover better rPPG
signals with curves and peak locations for accurate HR and
HRV estimation (Yu, Peng, et al., 2019). Figure 5 illustrates
the two architectures of STVEN and rPPGNet modules in an
end-to-end framework.

Further research developed was done by Yu et al. where they
implemented evolutionary algorithms through neural architec-
ture search (NAS) (Yu, Li, Niu, Shi, & Zhao, 2020). By using
NAS the researchers suggested a new model with improved
general performance. They developed a novel approach for
temporal difference convolutions (TDC) that uses a 3x3x3
kernel with 1 channel to calculate the temporal differences.
Furthermore, the researchers also provided a novel hybrid loss
function that accounts for time and frequency constraints.

Fig. 5. The overall end-to-end framework of STVEN and rPPGNet (W. Chen
& McDuff, 2018).

L. Recurrent Neural Networks

In the before mentioned study of Yu et al., a network
architecture was proposed to extract rPPG with recurrence
(Yu, Li, & Zhao, 2019). Recurrent neural networks (RNN)
are model that uses recurrence in the network to use temporal
information to make estimations, by processing the data in
one step while retaining information from the previous step.
The proposed model combined 2D CNN with RNN (LSTM,
BiLSTM, ConvLSTM). The input and the output of the
two PhysNet were similar. The RNN based on the input
was processed into the 2D CNN to extract spatial features.
Subsequently, the extracted features were further propagated in
the temporal domain by the ability of recurrence in the model.
However, after compares of the two models, the 3D CNN
based PhysNet achieved an overall better performance that
the recurrent based model. Other researchers also proposed an
RNN based model that implemented the combination of 2D
CNN and ConvLSTM networks and attention mechanism to
extract an rPPG signal. This LSTM is an RNN architecture that
offers an advantage as it can handle sequences of data points
such as speech or video. It consists of two branches, the trunk
branch and the mask branch. The trunk branch extracts features
through a 2D CNN. The mask branch uses a max pooling layer
and an attention mechanism to select and enhance critical parts
of the feature maps and eliminate noise. The ConvLSTM is



present in the first and last two layers of the network to use
the sequential information of feature maps at different scales
and receptive fields. Figure 6 illustrates the architecture with
the trunk branch and mask branch.

Fig. 6. The spatial temporal CNN (W. Chen & McDuff, 2018).

Additionally, other researchers published a paper that also
used an end-to-end framework for rPPG estimation (E. Lee,
Chen, & Lee, 2020). The model called meta-rPPG uses super-
vised learning with training data. To improve the robustness of
the model the researchers employed an adaptive transductive
meta-learner to cope with changes during testing through the
use of weights adjustment based on unlabeled samples. The
model consists of two major parts, the feature extractor and the
meta-learner. The proposed end-to-end meta-learning frame-
work showed substantial improvements on the MAHNOB-
HCI and UBFC-rPPG datasets demonstrating state-of-the-art
results. Overall, it displayed better accuracy than conventional
methods like CHROM and ICA. It also improved the accu-
racy compared to other deep learning models DeePhys and
PhysNet.

M. Hybrid Models

The following section discusses hybrid deep learning tech-
niques that are only applied in some parts of the pipeline.
These hybrid techniques aim to take advantage of both the
traditional methods and deep learning methods to achieve a
better performance compared to using one of them alone.

N. Hybrid 2D CNN

Deep-HR is a 2D CNN that is used for HR estimation. The
model consists of two components, the front end and the back
end. The front end uses 2D CNN to learn the ROI of the face.
The back end is a fully-connected NN trained on the back end
output to predict HR (Sabokrou, Pourreza, Li, Fathy, & Zhao,
2021). The two components are trained independently which
helps in better translation to other frameworks. Deep-HR also
incorporates a GAN to generate rPPG and reduce noise. The
ROI detector is optimised on an objective function. The signal
extraction component distils the colour information of the RoI
and provides the input to the BE component (Sabokrou et
al., 2021). However, a disadvantage of the model is that it
doesn’t estimate rPPG signals but does direct HR estimation.
Thus, the model doesn’t translate well to other vital parameter
estimations such as the respiratory rate or HRV.

Fig. 7. The outline of the Deep HR method for HR estimation. On the left
the front end and on the right the back end (W. Chen & McDuff, 2018).

O. Hybrid 3D CNN

The Siamese-rPPG is a hybrid deep learning network based
on a Siamese 3D CNN architecture. The model is made of
two branches with identical architecture. Those architectures
contain multiple layers of 3D CNN and average pooling
layers (Tsou, Lee, Hsu, & Chang, 2020). The model also
has a weight-sharing mechanism which is implemented to
improve the robustness in instances when noise is subjected to
specific ROIs. The final layers use global average pooling and
1D CNN to collapse the feature maps into the rPPG output
signal. Overall, the model displayed superior performance
compared to conventional methods. However, it must be noted
that the model was only evaluated on two data sets and
probably only generalises well on the distributions of those
datasets. The researchers also performed an ablation study to
compare different regions of interest. They had three varying
ROIs, the cheeks, forehead and the whole head (Tsou et al.,
2020). Contrary to the conventional theory which implements
the cheek and forehead region the overall performance was
superior in the whole head condition (Poh et al., 2010a). Figure
8 illustrates the siamese-based network containing 6 layers and
a final layer with global average pooling.

Another hybrid 3D CNN was presented by Bousefaf et
al. (Bousefsaf, Pruski, & Maaoui, 2019). The CNN consists
of a 3D convolutional layer with 32 filters of size 58 x
20 x 20, followed by a 3D max-pooling layer and a ReLU
activation function. The final activations are then passed to
fully connected layers. The model was trained using the
backpropagation algorithm with the Adam optimizer and a
categorical cross-entropy loss function. The research also
incorporated synthetic data into the training of the model
to improve generalisation. The training process also used an
early-stopping criterion based on overfitting detection. The
final model produced prediction maps for each group of pixels
in the video stream, and the class with the highest score was
saved and presented in the maps.

P. Hybrid RNN

The Long Short-Term Memory Deep-Filer (LSTM-DF) was
introduced by Botina-Monsalve et al. to filter rPPG signals as
an alternative to conventional signal processing techniques.
The authors proposed a LSTM network to filter the rPPG



Fig. 8. The visual representation of the siamese-rPPG network (Tsou et al.,
2020).

signal (Botina-Monsalve et al., 2020). The model was able to
predict the rPPG signal and especially its temporal structure.
This isn’t possible with the usual signal processing based
filtering methods. The results of this study show that the deep
learning based filtering method outperforms the regular post-
processing ones in terms of signal quality and accuracy of
heart rate estimation. However, it must be mentioned that the
authors only evaluate the model on one dataset. Therefore the
model is limited in applicability to other data distributions.

Q. Hybrid General Adversarial Networks

The PulseGAN is a generative adversarial network designed
to generate a realistic rPPG signal. The PulseGAN builds on
top of the CHROM algorithm that aims for signal quality
improvement similar to the reference PPG (Song et al., 2021).
The basic structure of a GAN is made up of a generator
and a discriminator. The generator network is designed as
a denoising autoencoder with skip connections, while the
discriminator network is composed of 1D convolutional layers
and a fully connected layer. The generator is trained to mini-
mize the error losses in both the time and frequency domains,
which are defined by the loss functions of the generator and
the discriminator. Adversarial learning is utilized to generate
a target signal that is as close as possible to the reference
signal (Song et al., 2021). The PulseGAN shows significant
improvement in the accuracy of the CHROM method. This
model also offers the advantage that it can be added on top
of any existing conventional method. Figure 9 illustrates the

discriminator and the generator components of the PulseGAN
with skip connection layers.

Fig. 9. Schematic overview of ICA (Song et al., 2021)

R. HR estimation using rPPG

In general two major methods are implemented for HR
estimation after the rPPG is obtained. The first one that is often
used is frequency analysis. FFT is the most commonly used
for conversing to the HR frequency because the rPPG signal
contains periodicity (Poh et al., 2010a). After it’s translated to
the frequency domain the HR with the highest spectral density
is chosen as the HR. With peak detection, it’s also possible
to extract vital parameters such as the HRV. To improve peal
detection cubic spline functions are used to interpolate the
signal, by using a sliding window to identify the peaks (Rouast
et al., 2018). The peaks are defined as the maximums within
the signal, and their detection allows for a more accurate
estimation of HR frequency.

VI. DISCUSSION

In recent years, rPPG technology has gained momentum,
and various methods have been suggested to address the
challenges in remote HR measurement, such as illumination
changes, motion artifacts, skin-tone variations, and video com-
pression. This section will discuss a comparative analysis of
the before mentioned studies. But it must be noted that due to
the variations in data sets that contain various demographics
and conditions which make a comparison between the studies
challenging. The commonly used evaluation metrics in the
research papers are mean average error (MAE), root mean
squared error (RMSE) and Pearson correlation coefficient. The
analysis and evaluation of conventional techniques on similar
data sets were extensively explored in the paper of Boccignone
et al. (Boccignone et al., 2020). The extensive comparison of
the results shows that the earlier produced methods of GREEN,
ICA, and PBV perform generally worse on the 15 datasets. The
main conclusion of the authors shows that POS, CHROM,



PCA, and SSR are the superior conventional algorithms.
Although CHROM and POS don’t display significantly better
performance on the evaluation metric than PCA and SSR.
In general, the performance shows slightly better results for
CHROM and POS. The extensive table of the MAE and PCC
for the conventional algorithms and the respective datasets is
in Appendix A.

A comprehensive overview of deep learning-based contact-
less heart rate measurement methods were also provided in the
paper. It should be noted that the evaluation of the hybrid deep
learning methods cannot be done by comparing individual
components of the network, hence the discussion focuses on
the overall performance of the end-to-end frameworks. One of
the major advantages of using deep learning methods, such as
convolutional neural networks (CNNs), in rPPG technology is
that automatic feature selection can be done through backprop-
agation and fitting the training data. Ni et al. evaluated various
deep learning networks such as STVEN-rPPGNet, MetarPPG,
PhysNet, and iPPG. The results of the evaluation of rPPG
extraction methods showed a minimal MAE and MSE for
PhysNet. However, the black-box nature of deep learning is
a barrier to applying such systems in healthcare. In addition,
rPPG methods suffers from performance issues in low and
high HR ranges.

Another notable weakness in the available datasets and
algorithms is that they mainly focus on two major challenges,
motion artifacts and illumination variations. Other challenges,
such as skin-tone variations, multiple-person detection, and
long-distance estimations, aren’t addressed to meet the robust
standards for real-world scenarios (Dasari, Prakash, Jeni, &
Tucker, 2021). This is further confirmed in a recently pub-
lished paper which investigated the biases of rPPG methods.
The paper showed that the current state-of-the-art models for
conventional as well as deep learning aren’t robust enough. As
the evaluation of a dataset with different demographic factors
such as skin tone, age, gender and country of origin resulted in
a substantial increase in error and standard deviation (Dasari
et al., 2021). Thus, displaying less robustness in general.
Therefore, future research needs to acquire high-diversity
and high-quality datasets before it can evaluate the general
robustness of new methods. and allow comprehensive training
in supervised methods.

VII. CONCLUSION

This paper has provided a comprehensive overview of the
relevant literature on contactless heart rate measurement meth-
ods. First, an overview of contact-based PPG and contactless
PPG methods were covered. Then, the review focus on the
rPPG pipeline, with the components of face extraction, ROI
selection and signal processing. Next, conventional methods
have been introduced in the literature for heart rate measure-
ment using rPPG. Following this deep learning based methods
for rPPG extraction have been explored. The rPPG methods
were analyzed, and the capability of these methods to compare
results on similar datasets was considered. methods were ana-
lyzed, and the capability of these methods to compare results

on similar datasets was considered. The limitations of rPPG
included factors such as motion artifact, skin pigmentation,
and lighting conditions that can affect the accuracy and relia-
bility of the signals obtained. While vital parameter estimation
with rPPG technology has shown remarkable results, there
are still many challenges to overcome, such as performance
on different HR ranges, addressing biases, and the need for
more comprehensive and high-quality datasets. Future research
needs to address these challenges and further the development
of novel methods and algorithms to improve the performance
and accuracy of rPPG technology under real-life conditions. .
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APPENDIX

A. Evalution of conventional methods on 15 datasets



Fig. 10. MSE and PCC for conventional methods 15 datasets (Boccignone et al., 2020).


